RESEARCH
Research Interests
Partial Differential Equations
Nonlinear Wave Theory
Integrable Systems
Soliton Theory
Hamiltonian Systems
Algebro-Geometric Solutions
Riemann-Hilbert Problem
Research Mentorship
Timesha Booker, Florida A&M University- Summer 2021 Research Project (See publication below)
Demetrius Rowland, The University of Texas at Austin - Undergraduate Research (Research paper submitted)
Parthiv Konakanchi, Indus International School Hyderabd, Mokila INDIA - SIMIODE Prjoect (See project here)
Modibbo Oumarou Ndekaou Djafarou, University of Ngaoundere, Ngaoundere CAMEROON - SIMIODE Project (See project here)
Avinash Vadali, Latin School of Chicago, Chicago IL USA - SIMIODE Project (See project here)
Publications
S. Manukure and T. Booker, A short overview of solitons and applications (https://doi.org/10.1016/j.padiff.2021.100140)
Y. Zhou and S. Manukure, Solitons, Rational and interactive solutions to the B-type Kadomtsev-Petviashvili equation, J. Appl. Anal. Comput., 11(5): 2473-2490 (2021)
S. Manukure and Y. Zhou, A study of lump and line rogue wave solutions to a (2+1)-dimensional nonlinear equation, J. Geom. Phys., 104274 (2021).
Y. Zhou, S. Manukure and M. McAnally, Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation, J. Geom. Phys., 104275 (2021).
E. A. Appiah and S. Manukure, An integrable soliton hierarchy associated with the Boiti-Pempinelli-Tu spectral problem, Mod. Phys. Lett. B, 2150282 (2021).
W. X. Ma, S. Manukure, H. Wang and S. Batwa, Lump solutions to a (2+1)-dimensional fourth-order nonlinear PDE possessing a Hirota bilinear form, Mod. Phys. Lett. B, 2150160 (2021).
S. Manukure and Y. Zhou, A (2+1)-dimensional shallow water equation and its lump solutions, Int. J. Mod. Phys. B, 33, 1950038 (2019)
S. Manukure, A. Chowdhury and Y. Zhou, Complexiton Solutions to the asymmetrical Nizhni-Novikov-Veselov equation, Int. J. Mod. Phys. B, 33, 1950098 (2019)
Y. Zhou and S. Manukure, Complexiton Solutions to the Hirota-Satsuma-Ito equation, Math. Meth. Appl. Sci., 42: 2344{2351 (2019)
N. Fernando and S. Manukure, A note on Dickson polynomials of the third kind and Legendre functions, JIASF, 10 (1), 151-160 (2019)
Y. Zhou, S. Manukure and W. X. Ma, Lump and Lump-Soliton Solutions to the Hirota-Satsuma-Ito equation, Commun. Nonlinear Sci. Numer. Simulat. 68, 56-62 (2019)
S. Manukure, Y. Zhou and W. X. Ma, Lump Solutions to a KP-Like equation, Computers & Mathematics with Applications, 75(7), 2414-2419 (2018).
S. Manukure, Finite-Dimensional Hamiltonian Systems Generated From Some Spectral Problem By Symmetry Constraints, Commun. Nonlinear Sci. Numer. Simulat. 57, 125-135 (2018)
S. Manukure, Hamiltonian Formulations and Symmetry Constraints of Soliton Hierarchies of (1+1)-Dimensional Nonlinear Evolution Equations, http://scholarcommons.usf.edu/etd/6310 (PhD Dissertation)
S. Manukure and W. X. Ma, An integrable extension of a soliton hierarchy associated with so(3;R) and its bi-Hamiltonian formulation, J. Math. Phys. 56, 111505 (2015).
S. Manukure and W. X. Ma, A soliton hierarchy associated with a new spectral problem and its Hamiltonian structure, J. Math. Phys. 56, 021502 (2015).
S. Manukure, W. X. Ma and E. Appiah, A tri-Hamiltonian formulation of a new soliton hierarchy associated with so(3;R), Appl. Math. Lett., 39, 28-30 (2015).
S. Manukure and W. X. Ma, Bi-integrable couplings of a new soliton hierarchy associated with a non-semisimple Lie algebra, Appl. Math. Comput. 245, 44-52 (2014).
W. X. Ma, S. Manukure and H. C. Zheng, A counterpart of the WKI soliton hierarchy associated with so(3,R), Z. Naturforsch. 69a, 411-419 (2014).